USB-UIRT Command Protocol

By Jon Rhees

Copyright © 2003

All Rights Reserved

Abstract

The USB-UIRT discussed herein represents a second-generation UIRT derivative.

Significant modification and improvements in functionality have been added to the original UIRT design and corresponding firmware to allow for the following:

· Utilization of a more capable microcontroller

· Ability to capture and re-transmit multi-pattern IR codes

· Ability to capture and re-transmit longer IR code-strings

· Ability to control GPIO pins from host or IR events, including Resume from Standby

· Improvements in IR sensing algorithms

· Etc.

The following represents the USB-UIRT command protocol to date for control of the USB-UIRT.

NOTE: THIS PROTOCOL IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE. THIS PROTOCOL IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

Current firmware revision detailed: 5.0 (USB-UIRT Protocol rev 1.0)

Protocol Detail

Initialization:
Upon enumeration of the USB-UIRT (Power-ON), the USB_UIRT will be ready for normal operation and IR reception. The USB-UIRT interface, when configured as a virtual COM port, should be set up as follows:

Baud Rate:
125,000

Data Bits:
8

Parity:

None

Stop Bits:
1

Flow Control:
RTS/CTS

NOTE: It is the responsibility of the host to configure these parameters and the non-standard (125,000 bps) baud rate. It is also the responsibility of the host to accommodate and control flow control.

Any IR data received by the USB-UIRT will be sent to the host in UIR format mode by default.

IR Reception:
IR Data received by the USB-UIRT firmware will be interpreted and sent to the host. Data can be collected in two formats: 1) UIR and 2) RAW. These data formats are as follows:

UIR:

This format is compatible with UIR receivers. It consists of a six-byte data packet intended to uniquely represent the received IR code. It is not intended to carry sufficient data to recreate the IR transmission. When in UIR reception mode, each IR reception will be transformed into a 6-byte data string and sent to the host as a stream of six consecutive bytes. No additional data will be sent (terminators, etc.). However, due to the speed of IR transmissions, a space of multiple milliseconds (at least) will separate each 6-byte transmission to the host. Also, the USB-UIRT ‘triggers’ the USB transport layer to dispatch the 6-byte data payload to the host as a single USB packet.

RAW:

This format is intended for allowing a host computer connected to the USB-UIRT to ‘learn’ IR code-strings. When in RAW mode, very little filtering is performed on received IR signals. Instead, the on/off timing information is sent to the host for processing. RAW format is a variable-length format, and can generate data streams of unlimited (theoretically) length to the host. RAW format follows the following format:

	Byte 0
	Interspace Hi-Byte
	High byte of time (in 50uS increments) since final pulse of last RAW IR reception

	Byte 1
	Interspace Lo-Byte
	High byte of time (in 50uS increments) since final pulse of last RAW IR reception

	Byte 2
	Pulse Width (1)
	Width in 50uS units of IR ‘on’ time

	Byte 3
	Space Width (1)
	Width in 50uS units of IR ‘off’ time

	Byte 4
	Pulse Width (2)
	

	Byte 5
	Space Width (2)
	

	…
	…
	…

	Byte n-1
	Pulse Width (last)
	Width of final pulse

	Byte n
	0xFF
	Terminator

Each IR reception will stream data to the host in the above format until approximately 10mS of time elapses with no received IR energy, at which point a terminator byte (0xFF) will be transmitted.

NOTE: The RAW receive format is currently backward-compatible with the UIRTx firmware. This will likely change going forward to accommodate the IR carrier frequency receiver (wideband) capability of the USB-UIRT.

GPIO Events:
The USB-UIRT firmware is capable of monitoring GPIO pins configured as inputs and generating UIR style pseudo-events when these pins change state. When a pin changes state, a six-byte UIR ‘code’ will be created and sent to the host. This code is intended to utilize the same parsing algorithms on the host as the UIR interpreter, so 6 bytes will be transmitted. For GPIO events, bytes 2 through 5 will be 0xFF. Byte 1 (first byte sent) will be of the format:
 bit 7 = Polarity:
 0 --> Pin sensed a H->L transition
 1 --> Pin sensed a L->H transition
 bits 6..5 = reserved
 bits 4..0 = Pin #:
 0..7 --> Port A pins 0..7
 8..15 --> Port B pins 0..7
 16..23 --> Port C pins 0..7
 24..31 --> Port D pins 0..7
 NOTE: The current USB-UIRT hardware model does not support this feature.

IR Transmission:
IR Data may be sent from the host to the USB-UIRT for transmission. Data can be defined in two formats: 1) STRUCTURED, and 2) RAW. These data formats are as follows:

STRUCTURED:

This format is primarily for backward-compatibility to the UIRTx. It consists of either 27 bytes or 49 bytes of structured data defining the IR pulse stream.

NOTE: All timing is NOT expressed in 50uS per unit!.
	Typedef struct {

	BYTE bFrequency,

BYTE bRepeatCount;

	
	BYTE bISDlyHi,bISDlyLo;

	
	BYTE bBits,bHdr1,bHdr0;

	
	BYTE bOff0,bOff1,bOn0,bOn1;

	
	BYTE bDatBits [16];

	
	BYTE bCheck;

	
	} REMSTRUCT1;

-or-

	Typedef struct {

	BYTE bFrequency,

BYTE bRepeatCount;

	
	BYTE bISDlyHi,bISDlyLo;

	
	BYTE bBits,bHdr1,bHdr0;

	
	BYTE bOff0,bOff1,bOn0,bOn1;

	
	BYTE bDatBits[16];

	
	BYTE bCmd2;

	
	BYTE bISDlyHi2,bISDlyLo2;

	
	BYTE bBits2,bHdr21,bHdr20;

	
	BYTE bOff20,bOff21,bOn20,bOn21;

	
	BYTE bDatBits2[12];

	
	BYTE bCheck;

	
	} REMSTRUCT2;

Where :
bFrequency specifies the IR modulation frequency accrding to the following equation:

tUnit = 2 * ((bFrequency & 0x7F)/2500000).

fCarrier = 1/(tUnit / 2) when (bFrequency &0x80) == 0, or

fCarrier = DC when (bFrequency &0x80) <> 0

bRepeatCount (bits 0-4) specifies the number of times the codestream is transmitted. This value must be zero (0) for multi-code transmissions using REMSTRUCT2. In the case of multi-code transmissions, the pulse stream defined by bFrequancy, bRepeatCount, bISDlyHi/Lo, bBits, bHdr1, bHdr0, bOff0, bOff1, bOn0, bOn1, and bDatBits will be sent exactly once, followed by the pulse stream defined by REMSTRUCT2 (bFrequency2, bRepeatCount2, bISDlyHi2/Lo2, bBits2, bHdr21, bHdr20, bOff20, bOff21, bOn20, bOn21, and bDatBits2 repeated the number of times specified in bCmd2.
bISDlyHi/bISDlyHi2, bISDlyLo/bISDlyLo2 = inter-transmission delay in 50uS units.
bBits/bBits2 = Number of data bits in the package (excluding the first 2)
bHdr1/bHdr21 = width of first pulse in tUnit’s
bHdr0/bHdr20 = width of first pause in tUnit’s
bOff0/bOff20 = width corresponding with a data bit of 0 for a pause in tUnit’s
bOff1/bOff21 = width corresponding with a data bit of 1 for a pause in tUnit’s
bOn0/bOn20 = width corresponding with a data bit of 0 for a pulse in tUnit’s
bOn1/bOn21 = width corresponding with a data bit of 1 for a pulse in tUnit’s
bDatBits/bDatBits2 = 16/12 bytes which hold the actual data, lsb in bit 0 in tUnit’s
Note that STRUCT transmission requests MUST be encapsulated in the extended command structure defined below!
NOTE: This format is primarily for backward-compatibility to the UIRTx. HOWEVER, be aware that the command encapsulation and carrier frequency format have changed. This format will likely be extended to a variable-length format in future protocol revisions.

RAW:

This format is allows maximum flexibility for IR transmission but is limited as to the length of IR pulse streams. With this format, up to 23 unique pulse/space combinations can be defined and transmitted/repeated. RAW mode transmissions follow the format:

	Byte 0
	Frequency
	Defines fCarrier and tUnitRaw as follows:

tUnitRaw = (bFrequency & 0x7F)/2500000.

fCarrier = 1/tUnitRaw when (bFrequency &0x80) == 0, or

fCarrier = DC when (bFrequency &0x80) <> 0

	Byte 1
	Repeat Count
	bit 0-4 = repeat counter (number of times the package is transmitted)

	Byte 2
	Interspace Hi-Byte
	High byte of time (in 50uS increments) since final pulse of last RAW IR reception

	Byte 3
	Interspace Lo-Byte
	High byte of time (in 50uS increments) since final pulse of last RAW IR reception

	Byte 4
	RAW Byte Count
	Number of Pulse and Space bytes that follow (not pairs, see compression discussed below)

	Byte 5
	First Pulse Width
	Width in tUnitRaw units of IR ‘on’ time

	Byte 6
	First Space Width
	Width in tUnitRaw units of IR ‘off’ time

	Byte 7
	Second Pulse Width
	

	Byte 8
	Second Space Width
	

	…
	…
	…

	Byte n
	Pulse Width (last)
	Width of final pulse (in tUnitRaw units)

Pulse/Space Compression and Expansion:
Each Pulse and Space byte normally represents 7 bits of tUnits and must have the msb (bit 7) set to 0. To allow longer pulse and space times to be realized, bit 7 may be set to a 1 to create a 2-byte, 15-bit tUnit value, where the 15 bit value is derived from ByteN and ByteN+1 as follows:

value = ((ByteN & 0x7F) << 8) OR ByteN+1
Note that RAW transmission requests MUST be encapsulated in the extended command structure defined below!

USB-UIRT Commands:

SIMPLE COMMANDS

Many single-byte ‘simple’ commands are issued by a single-byte (command) followed by a checksum. They are:

SETMODEUIR = 0x20 + checksum
Sets the mode of the transceiver to UIR code, meaning that on reception of IR data, a 6 bytes UIR compatible code will be sent to the PC as defined above. The USB-UIRT replies with CMDOK or an error code.
SETMODERAW = 0x21 + checksum
Sets the mode of the transceiver to RAW code, meaning that on reception of IR data, every pulsewidth and pause width is sent to the PC as defined above. The USB-UIRT replies with CMDOK or an error code.
SETMODESTRUC = 0x22 + checksum
Not Supported
GETVERSION = 0x23 + checksum
On this command, the USB-UIRT will send 7 bytes of version info followed by a checksum byte, as follows:

Byte 0: Firmware MinorVersion
Byte 1: Firmware MajorVersion
Byte 2: ProtocolCompatibility MinorVersion
Byte 3: ProtocolCompatibility MajorVersion
Byte 4: FirmwareDate Day
Byte 5: FirmwareDate Month
Byte 6: FirmwareDate Year

For the USB-UIRT protocol described here, the versions are currently:

Firmware Version = 5.0

ProtocolCompatibility Version = 0.0
Note: ProtocolCompatibility specifies the ‘minimum required’ protocol version support on the host for proper operation. A value of 0.0 indicates no compatibility requirements.

EXTENDED COMMANDS:
Extended commands are variable-length commands issued by sending the command code (e.g., 0x31) followed by a length byte bLen followed by the variable-length command data followed by the single-byte checksum. As always, the checksum includes all data bytes. The length byte bLen = the number of data bytes in the command data + 1.

GETGPIOCAPS = 0x30 + 0x01 (length) + checksum
Retrieves the GPIO capabilities defined by the USB-UIRT. This may vary on different UIRT designs and therefore should be queried by the host if any GPIO features are used. The UIRT responds with 6 bytes as follows:
bNumSlots + bPAMask + bPBMask + bPCMask + bPDMask + checksum;
where bNumSlots indicates the number of programmable slots available in the UIRT’s nonvolatile event memory, and bPxMask represents a bitmask of available outputs on a particular port. The current USB-UIRT will respond with 4 slots available and PortA.3 and PortB.0 as available outputs.

GETGPIOCFG = 0x31 + 0x02 (length) + bSlot + checksum
Retrieves the GPIO event control data for a particular slot from NVRAM, where bSlot is 0..bNumSlots-1. The UIRT responds with 9 bytes as follows: bUIRCode[6] + bAction + bDuration + checksum. The six-byte bUIRCode represents the IR code to trigger the event and is in the same six-byte format as UIR codes described in IR Reception above. The bytes bAction and bDuration are defined as:
 bAction:
 bit 7,6 = Pin Action:
 00 --> Pulse Pin (positive)
 01 --> Set Pin
 10 --> Clear Pin
 11 --> Pulse Pin (negative)
 bit 5 = reserved
 bit 4,3 = Port:
 00 --> Port A
 01 --> Port B
 10 --> Port C
 11 --> Port D
 bit 2,1,0 = Port Pin:
 000 --> Pin 0
 …
 111 --> Pin 7
 bDuration:
 Duration of event in 5mS increments.

Wake-Up Event: Wake from Standby is accomplished using the GPIO functionality. A wake-up slot can be defined by programming a ‘Pulse Pin (negative)’ action to be performed on PortA.3 for approximately 100mS.

The current USB-UIRT design wires the PortB.0 line to the indicator LED (active LOW).

SETGPIOCFG = 0x32 + 0x0A (length) + bSlot + bUIRCode[6] + bAction + bDuration + checksum
Programs the GPIO event control data for a particular slot into NVRAM, where bSlot is 0..bNumSlots-1 and bUIRCode[6], bAction, and bDuration are as described in GETGPIOCFG above. The USB-UIRT responds CMDOK (0x21) when programming is complete.

GETGPIO = 0x33 + 0x01 (length) + checksum
Retrieves the current state of all four GPIO ports on the UIRT (varies by design). The USB-UIRT responds with 5 bytes as follows: bPortA + bPortB + bPortC + bPortD + checksum.

SETGPIO = 0x34 + 0x03 (length) + bAction + bDuration + checksum
Manually triggers a GPIO event with bAction and bDuration defined as in GETGPIOCFG above. The USB-UIRT responds with TRANSMITTING (0x20). Note it is the responsibility of the host to hold off further transmissions to the USB-UIRT for the expected duration of the event.

REFRESHGPIO = 0x35 + 0x01 (length) + checksum
Forces the USB-UIRT’s internal trigger on GPIO’s which are configured as event inputs (none currently supported on the USB-UIRT). This will cause the USB-UIRT to immediately generate a GPIO event to the host (see GPIO Events above).

DOTXRAW = 0x36 + cmdLength + RAWSTRUCT + checksum
Initiates an IR transmission of raw data based on RAWSTRUCT (defined in IR Transmission (RAW) above. Command length bLength = 1 + length of RAWSTRUCT, in bytes.
Note that it is the responsibility of the host to hold off further requests or transmissions to the USB-UIRT for the expected duration of the IR transmission ([IR transmit time + InterCode Delay] * repeatCount).

DOTXSTRUCT = 0x37 + cmdLength + REMSTRUCT + checksum
Initiates an IR transmission of raw data based on REMSTRUCT (defined in IR Transmission (STRUCT) above. Command length bLength = 1 + length of REMSTRUCT (or REMSTRUCT2), in bytes.
Note that it is the responsibility of the host to hold off further requests or transmissions to the USB-UIRT for the expected duration of the IR transmission.

GETCONFIGURATION = 0x38 + 0x01 (length) + checksum
Retrieves non-volatile USB-UIRT configuration settings. These settings are stored in three Bytes as follows:

Byte 0: bits 7..2 = 0 <reserved>; bit 1 = LED Blink on IR TX, bit 0 = LED Blink on IR RX

Byte 1: 0 <reserved>

Byte 2: 0 <reserved>
Note: these <reserved> bit definitions will migrate over time.

Generic Response codes:
TRANSMITTING = 0x20
CMDOK=0x21
CSERROR = 0x80 (checksum error)
TOERROR= 0x81 (Time out error)
CMDERROR=0x82 (Command error undefined command)
All checksums in this description are 1 byte which make the sum of the sent or received package 0.... eg a command 0x22 would need a checksum of 0xde since 0xde+0x22 adds up to 0x00 (byte of course).
